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STATISTICAL DESIGN OF EXPERIMENTS FOR CONTINUOUS DATA

Paul C. Cox
Reliability and Statistics Office

The Army Missile Test and Evaluation Directorate
White Sands Missile Range, New Mexico

I. INTRODUCTION. I wish to talk on the subject of how one would
design an experiment and analyze the data when the results come in the
form of a continuous curve, rather than just a single value. This is an
area that would appear to have extensive application in science and
engineering. For example: velocity data, trajectory data, meterological
data, thrust data, etc. As I just mentioned, I am interested in the design

of experiments, which means I am not concerned with the evaluation of a

single curve, but many curves obtained as a result of testing under several
sets of conditions, and very likely each set of conditions will have some
replications.

To illustrate what I have in mind, I will use rocket motor thrust curves,
although I could have used some other type of curve equally effectively.
Now many results from rocket motor tests can easily be analyzed. For
example: average exhaust velocity; effective (average) pressure; total
impulse; specific impulse, etc. These are simple to analyze because the
data for a given test usually comes in the form of one single number.
However, if we want to estimate a typical or average thrust curve when a
motor is tested under given conditions, this is quite a different problem.

To keep this report unclassified, the thrust data which will be dis-
cussed will be completely fictitious. The data is not, to my knowledge,
appropriate for any existing rocket motor, but the general shape of the
curve is similar to what may be expected for a number of motors currently
in use.

The extensive information available in such areas as: Regression
Analysis; Random Processes; Power Spectral Analysis; Time Series;
Analysis of Covariance; Multivariate Analysis; and similar fields may
easily cover the problem I am going to present. Therefore, my first
question is, if the solution is readily available in the literature, I would (1)
like some references. My second question is, if it is not readily available

but you know the answers, I will appreciate the information. (Please note (2)
that there are numbers along the margins of this report. These numbers
refer to specific questions which may be found at the end of this report.)

I will conclude the introduction by stating that the five panel members,
W. T. Federer, B. G. Greenberg, M. A. Schneiderman, H. L. Lucas,
and H. 0. Hartley have all prepared and forwarded their comments. These

* are included at the end of the report in the order in which they were received.
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II. BASIC ASSUMPTIONS.

A. We will begin by assuming that the thrust curves to be considered

in this study will look something like the one illustrated in Figure 1, although

an actual curve will be somewhat more irregular than the example. The

letters along the curve will represent the points which we will consider

critical, and we will refer to these points many times in the future.
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Figure 1

A Typical Thrust Curve for This Study

B. The Second assumption we will make is that the propellant mix
from whence the motors are selected as well as the preconditioning
temperature can influence the shape of the thrust curve. We will use motors
selected from the three propellant mixes (A, B, and C), and conditioned
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at three temperatures (O, 500, and 1000 F). We will use 27 motors, nine
randomly selected from each mix, and of the nine, three conditioned at each
of the temperatures. This arrangement is illustrated in Figure 2.

Conditioning Temperature

Mix 00 500 1000

A 3 3 3

B 3 3 3

C 3 3 3

Figure 2

Number of motors selected from each mix
and conditioned at each temperature.

C. The third assumption is that temperature conditioning will have an

effect similar to that illustrated in Figure 3. These three curves actually
represent the average of the curves selected from Mix A and conditioned
according to the specified temperature.

D. The fourth and final assumption is that the Test Engineer will want
the following information:

1. Does Mix difference or temperature conditioning have a significant
effect upon the shape of a thrust curve?

2. For a given propellant mix or temperature what is the mean or
expected thrust curve ?

3. In addition to the mean thrust curve, confidence and tolerance
bounds are desired.

Ill. ANALYSIS OF VARIANCE.

A. If you refer again to Figure 1, you will observe a slightly de-

clining plateau between points C and D. I resolved, first of all, to compare



56

T: T T X:7: TM: T T..... .. .....
+H+t: "M: X!+fft

m: HR
....... ..... ...

7 OD
HE
Hii
HE

Z ......

X1 i X 7

..... ..... Lr%

4+ T,
71: q :T: cu

LC\:X X: I . ....... ....
T T

Im T T.: 7 i m: m
. - - . . : . TiT.

T. T: 7.: 1 M7.

m: w

Xm X. .. .. .. -:t rj)
T ......

=nx T

T
0
-:t Ef)

M EAt
X - : :ME ........ - - -

cu
M

X X TX
cliI p

7
cli

7.
fi+fi .1 m T:

........... +ý+H-Hi I H-4 T . 0
...... . cu

TIMM"

........ . .....

cu

+1
7

t +f+l+ .4+ :4++V
T: X: OD

:T : : : F F. - it 1:
XT TT: M

T M

7.7 7 7 7

41
:1 '0 0 00 0 0Lr\ cu



.Design of Experiments 57

performance to this plateau area. One problem is evident from Figure 2,
namely the plateau areas are of different length at different temperatures.
I therefore decided to study only the region from 15 to 42 seconds inclusive.
For all 27 rounds, I read the values at 3 second intervals, that is to say
(15, 18, ... 42 seconds). The variances appeared to be homogeneous in
the region, so we performed the analysis of variance illustrated in Fig. 3.

Source of Variance d/f SS MS F

Mix 2 43217.71 21608..89 82.72**
Temperature 2 488387.22 244193.61 934.78**
Time 9 12325.61 1369.50 5.24**
(!M4ix)(Temperature) 4 19794.61 4948.65 18.94**
(Mix)(Time) 18 513.70 28.52 0. 11
(Time)(Temperature) 18 2954.70 164. 15 0. 63
(Mix)(Time)(Temperature) 36 24459.88 679.44 2. 60**

Error 180 47022.04 261.23
=(16. 16)

Total 269 638674.97

*Significant at .05 level (Single and double asterisk used in later tables
**Significant at . 0 1 level have the same meaning indicated here.)

Figure 4

Analysis of Variance of Thrust Values between 15 and 42 seconds
for 27 motors

From Figure 4 it appears that for these curves, temperature has a
highly significant effect, mix has an important effect, and there is a
significant, downward trend during this time interval. While the mix-
temperature interaction is significant, its F value is relatively small; so
we will assume it is not really critical. It may also be observed that the
pooled estimate of variance is 261. 23, and we will therefore assume a
standard error of 16 lbs. with 180 degrees of freedom. I then proceeded
to construct 9 graphs, one for each combination of temperature and mix.
Figure 5 illustrates the graph for Mix B and 50 temperature. I took the
sample of three and plotted the mean values for the interval from 15 to 42
seconds. Next, I used the pooled estimate of variance and plotted 950/
confidence bounds on this curve, and then on the outside of this, I plotted
tolerance bounds, y = 9500, P = 90/0.
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Clearly, the question at this point is that of the propriety of arbitrarily
taking a time curve, observing the values at stated intervals (every three
seconds in this case) and considering time, along with mix and temperature,( 3 )
as one of the treatments in the analysis variance, It is interesting that the
error term has 180 degrees of freedom, Had we arbitrarily chosen 2
second intervals, for example, instead of 3 second intervals for taking our
readings the degrees of freedom for error would have increased to 270.
There is clearly something illogical at this point.

B. Referring again to Figure 1, you will note that I have arbitrarily
selected six critical points. I then proceeded by performing an analysis of
variance for both the X and Y component for each of these critical compon-
ents. The Analysis of Variance for the Y component of A is given in Fig. 6
and the X component in Figure 7.

Sources of Var SS d/f MS F

Mix 198 2 99 0.74

Temp 27,746 2 13,873 104.30

Interaction 200 4 50 0. 38

Error 2, 398 18 133

Total 30, 542 26

Figure 6

Analysis of Variance for the Y (Thrust in Ibs) Component at Point A.

Sources of Var SS d/f MS F

Mix .1267 2 .0634 1.80

Temp .8339 2 .4170 11. 88**

Interaction .3129 4 . 1564 4.48*

Error .6317 18 .0351

Totals 1.9052 26

Figure 7

Analysis of Variance for the X (Time in seconds) Component for Point A
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From this it may be observed that temperature had a significant effect
but mix did not. Returning to Figure 5, the mean value was located for
Point A and a confidence rectangle was drawn about it. This procedure was
also followed for the other five critical points and these points were then
connected. For the time component, temperature had a significant effect
for all six critical points, mix at points D, E, and F. For the thrust
Component, temperature had a significant effect at all points except F and
mix had a significant effect at points B, D, and E.

One will obviously be concerned at this point by the fact that the six
critical points were arbitrarily chosen and are not precisely defined. This
could easily result in considerable inaccuracy in collecting data for these
points. However, this fact will not necessarily be emphasized since it is
not really relevant to the basic purpose of this paper.

However, the matter of performing separate analysis of the time and
thrust components of each critical point is highly questionable, and I am
certain that a procedure applying the bivariate normal distribution would
be in order.

Referring either to Figures 1 or 5, it would appear reasonable that if
an analysis of variance is appropriate for C-D, then it would probably be
equally appropriate for A-C and possibly for E-F. In fact, it would appear
more sensible than attempting to locate and evaluate critical points.

IV*. REGRESSION ANALYSIS. A second approach, and one which I feel
offers more promise is in the area of regression analysis and polynomial
fitting. I will discuss a few ideas along this line at the present time.

If you will refer to Figure 1 again, I arbitrarily broke the graph up into
four distinct segments. These are: O-A; A-C; C-D; and E-F. Then, for
all 27 motors, I fitted the most appropriate polynomial, that is to say, I
fitted a cubic to A-C and straight lines to the other three segments.

I will discuss the procedures I followed in analyzing segment C-D and
state little more than that analyses were performed on the other segments,
and upon completion all segments were plotted until they intersected. Using
the values from 15 to 45 seconds and recording the data at 3 second inter-
vals, a straight line was fitted for all 27 sets of data and an analysis of
variance was performed for a, b, and r in the equation Y = a + b. (X-30).
Figure 8 gives the analysis of variance and mean values for a, while Figure
9 gives the analysis of variance and means values for b, (note that mix had
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no significant effect upon b, so the mean values reflect only temperature). (6)

Neither mix nor temperature had any significant effect upon r (the correlation

coefficient), but the mean value of the 27 correlation coefficients was 820/.

Sources of Variation SS d/f MS F

Mix 4411 2 2206 6.28**

Temperature 45959 2 22980 65.42**

Interaction 1959 4 488 1.39

Error 6323 18 351

Total 58644 26

Mix Temperature
00 500 1000

A 280 348 375

B 292 365 385

C 264 309 376

Ave 278 340 379

Figure 8

The Analysis of Variance and the Mean Values for a,
when Fitting the Equation, Y = a + b . (X-30)

15 sec <x <45 sec (all means computed from a sample of 3,
y = thrust in lbs., x = time in seconds).
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Sources of Variation SS 'd/f MS F

Mix 0.618 2 0.319 1.040

Temperature 3. 689 2 1. 844 6. 209**

Interaction 0.967 4 0.242 .815

Errior 5.340 18 0.297

Total 10. 644 26

Temperature Oo 500 1000

Mean Value b -. 410 -. 881 -1.315'

Figure 9

The Analysis of Variance and Mean Values for b,
obtained from fitting the equation Y = a + b (X-30),

15 sec. < x <45 sec. (all means computed from a sample of 9)

The data in Figure 9 indicates that "b" increases almost linearily with

temperature. In fact, the formula b = -. 410 - (.00905) temp, might serve
as a guide for selecting "b" in the region 0 < temp < 100 . If one desires
a formula for estimating "au in the region for 00 < t~mp < 100 , he might
try the formula: a = 278 + 1.4 • (temp) - .0041(temp) which averages out
the mix effect.

Again referring to Figures 8 and 9, one may observe that the standard

error for naO is 18.7 lbs. with 18 degrees of freedom, and the standard
error for "be is 0. 545, also with 18 degrees of freedom.

In addition to this, each time a line is fitted by least squares, it is
possible to obtain a standard error of estimates and standard errors for
"a" and "b". For the 27 curves, I pooled these standard errors and obtain

the following results:

Pooled Standard Errors of estimates:
3.40 lbs. with 243 d/f.

Pooled Standard Error for "b":
0. 324 with 243 d/f.

0
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Pooled Standard Error for "a":
1. 025 with 243 d/f.

As may be expected, the estimates for the standard error for both "a" and
"b" are larger in Figures 8 and 9 than the pooled estimates listed above.
This is reasonable since the estimates in Figures 8 and 9 include the dis-
persions that exist among curves from the same lot and conditioned at the
same temperature, while the pooled estimates reflect the variation within
only a single curve.

Inasmuch as I am attempting to classify any curves which come from a
given mix and a given temperature, it would seem more appropriate to use
the estimates of variability in Figures 8 and 9. One other argument for this
lies in the fact that when the standard error of estimates was computed for
each of the 27 curves, it was computed from 11 points, selected from the
thrust curves at 3 second intervals. 15 sec <__time < 45 sec. Again the
question arises concerning the arbitrariness in choosing 3 second intervals
instead of some other intervals.

Now confidence bounds for a regression line at a point x. may be
computed from the formula 1

Y S(Yi) E(Yi) Y+ tS(T)

where Y. a +bx.i 1

and S () S (a) + x. S (b); = 0.1n 1

Since each "a" represents an average of 3 numbers and each "b" represents
an average of 9 numbers, we have:

2(---)i351 2 .297 _

S (.)= + x. = 117 + .033 x.1 9 1

These ideas are illustrated in Figure 10, in which we consider Mix C
0and a temperature of 0 , and fit the curve from 15 sec <_X <_ 45 sec.

(Segment C-D). This curve is given by V 264 - .410 X. or Y=264-.410. (X-30),
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2- 2
and the variance S:(Y)ý = 117± .033 X. was .used to compute a confidence

bound about the curve. Incidentally, the confidence bound in Figure 10 is
very close to the one illustrated in Figure 5.

The procedures for fitting the segments (0-A) and (E-F) could be quite
similar to that of fitting the segment (C-D). In fact the segment (0-A)
should be even simpler. To fit the segment (A-C), it is suggested that a
cubic equation be fitted, using data points at one second intervals. It is
further suggested that orthogonal polynomials be used when fitting a cubic (7)
or higher degree equation to simplify the process of obtaining the variance
and confidence bounds.

CONCLUSIONS. Frequently it ig desired to design an experiment when
the results of the test are a continuous curve rather than a single quantitative
value. Scientists and Engineers frequently want to know whether certain
levels of a given treatment will have a significant effect upon the curve
obtained, and what will an average or expected curve be for a given set of
conditions.

I have made a few suggestions based largely upon analysis of variance
or regression analysis. I will greatly appreciate comments on the proposed
solutions, but more important, I would like suggestions for better approaches

* to the problem.

QUESTIONS.
1. Has the problem of designing an experiment when the results come

as a continuous curve rather than a single value ever been solved? If so,
are useful references available?

2. Do you have any ideas of additional approaches beside those sug-
gested in the paper?

3. When studying a section of the curve such as C-D, is there any
justification in arbitrarily selecting a set of times between C and D, com-
puting the thrust at each of these times for all available curvex, and per-
forming an analysis of variance similar to that given by Figure 4? Perhaps

this would be in order with certain changes in procedure.

4. What procedures would you suggest when attempting to locate a
point in terms of both its X and Y components and then obtaining both a
confidence and tolerance region about this point?
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5. Is the analysis of variance for a, b, and r, as illustrated in
Figures 8 and 9 appropriate?

6. Have you any suggestions regarding the validity of the techniques,
using regression analysis, that were discussed in this section?


